
45 

 

CHAPTER 5  
 

 

THE MULTICELL SPHEROID MODEL FOR 

AVASCULAR TUMOUR GROWTH 

 

 
5.1 Introduction 

 

      The mathematical model of the solid tumour growth in this chapter focuses on the 

initial avascular stage of growth. A realistic model of spheroid growth should include 

certain nonuniformities in the central processes of inhibition of mitosis, consumption of 

nutrients, cell proliferation, as well as the dependence of cell mitotic rate on growth 

inhibitor concentration, geometrical constraints and central necrosis. Several papers 

(Adams, 1986; Adams, 1987a; Adams, 1987b; Chaplain & Britton, 1993) have focused 

their attention on the chemical inhibition of mitosis within multicell spheroids. The main 

assumption of the modeling is that a growth inhibitory factor (GIF) is produced within 

the spheroid in some prescribed spatially-dependent manner to reflect the observed 

cellular heterogeneity within spheroids. The existence and properties of chemicals which 

inhibit mitosis are very well documented (Bullogh & Deol, 1971; Folkman & Hochbrg, 

1973; Marks, 1973; Iversen, 1985; Iversen, 1991). In this work, we focus on the diffusion 

of a growth inhibitory factor within a multicell spheroid and its possible effect on cell 

mitosis and proliferation. The control of mitosis in tissues can be modeled as a schematic 

mechanism in which self-regulating growth is achieved as a result of negative feedback 

from the growing tissue (Brugal & Pelmont, 1975). The mitosis is assumed to be 

controlled by a discontinuous switch-like mechanism, such that if the concentration of the 
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GIF is less than some threshold level  , say,  in any region within the tissue, mitosis 

occurs in this region, whereas if the concentration is greater than  ,  mitosis is 

completely inhibited. 

 

         In this chapter, we examine the performance of the ADM and HPM when applied to 

avascular tumour growth model. This is extended model from the previous one which 

include a source function S(r) and  as the inhibitor production rate. 

 

5.2 Mathematical background 

 

       The differential equation describing the diffusion, production and degradation of the 

GIF within the spheroid can be written as,  

  

                                   rSCfCD
t

C




 2 ,                          r                     (5.1) 

 

where  trCC ,  is the concentration of GIF within the spheroid occupying the region 

3R and   is the inhibitor production rate (molecules per unit volume per second). 

 rS  is a smooth source function of the form (Chaplain & Britton, 1993) 
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      The model we consider is  
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 where we assume (initially) that production of GIF is via the uniform source function, P  

is the permeability of the tissue surface,   is the depletion rate and D  is the diffusion 

coefficient.  

        Considering the spherical geometry described in the introduction and assuming 

radial symmetry, the above system reduces to     
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                              ,0



PC

r

C
rD                                                .Rr                     (5.9)    

                                    00, rC  

 

      Before continuing with an analysis of the above system, it is appropriate to recast 

them in terms of dimensionless variables. Denoting by R ,   and t , the radius of the 

spheroid  GIF concentration, and as reference time,  we introduce the following 

dimensionless variables 

 

                          ,
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 The system now becomes, upon dropping the tildes for notational convenience, 
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where  ,2

D


   ,RB     




a     and  

 
P

D 2

1


   . With this non-dimensionalisation, 

we see that once the parameters for a particular spheroid are determined, the only 
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undetermined parameter is the radius R.  The solutions to the above equation can 

therefore be monitored for different size of spheroids. Thus we can analyse the system 

using different values for the spheroid radius R while holding constant the various 

observable parameters associated with the system, i.e.,  PD ,,   and  



 (Brugal & 

Pelmont, 1975).  

 

Let xr   and using the transformation  
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Eqs. (5.15) – (5.16) substituted into Eq. (5.11) becomes 
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Subject to initial condition 
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                            00, xu                                                                                            (5.18)                                          

 

The approximate solution to Eq. (5.17) is obtained by integrating Eq. (5.17) once with 

respect to t  and using the initial condition, where we obtained 
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In Eq. (5.20), we assume  xg  is bounded for all x  in     TTJ ,,0  and                

tmTt  0,' , T                                                                                              (5.21) 

 

We also set 

                             uBuF 2                                                                                         (5.22) 
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5.3.  Adomian Decomposition Method (ADM) 

 

The Adomian Decomposition Method is applied in Eq. (5.17) to get 

 

                                    222
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where   
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is an integrable differential operator with 
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Operating on both sides of Eq. (5.24) with the integral operator 1L defined by Eq. (5.26)  

leads to  
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where    0,xuxf   

The Adomian decomposition method assumes the solution in the series form (Adomian, 

1994): 
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Substituting Eq. (5.28) into (5.27) gives 
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The components  txun ,  of the solution  txu ,  can be elegantly completed using the 

recurrence relation. 
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Having determined the components 0u , 1u , 2u , … the solution u in a series form defined 

by Eq. (5.28) follows immediately. 

 

5.4  Homotopy Perturbation Method (HPM) 

 

To solve Eq. (5.17) with the HPM method, we construct the following homotopy: 
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where  1,0p  is an embedding parameter and o is an arbitrary initial approximation 

satisfying the given initial condition. 

 

In HPM, the solution of Eq. (5.33) is expressed as 
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Hence, the approximate solution of Eq. (5.17) is expressed as a series of the power of p, 

i.e 
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Substituting Eq. (5.34) into Eq. (5.33) and equally the coefficients of the terms with the 

identical powers of p : 
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Solving Eqs. (5.36 – 5.40), we have the recursive relation as follows: 
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5.5  Existence and convergence of ADM and HPM          

 

Theorem 5.1:  Let 10  , then Eq. (5.17) as a unique solution. 

 

  Proof:  Let u  and *u be two different solutions of Eq. (5.17) then  
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Theorem 5.2: The series solution    
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From Kalla (2008), we have 
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Since 10  , we have   ,11  mn then  txuSS
Jt

m

mn ,max
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1
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. But 

  ,,1 txu so as m then .0 mn SS  We confidence that nS is a Cauchy 

sequence in  JC , therefore the series is converges and the proof is completed. 
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5.6   Numerical experiment 

 

In this section, we compute numerically Eq. (5.17) by the ADM and HPM methods.  

From Eq. (5.17), 
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subject to initial condition 
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5.6.1 ADM  Method  

From Eqs.(5.30 – 5.31), we can obtain the first four terms of the solution as 
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We substitutes Eqs. (5.45) - (5.48) into (5.28), then we obtain the solution of Eq. (5.17) in 

as below: 
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5.6.2 HPM method 

Following the HPM method, from Eq. (5.36), we obtain 
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From Eq. (5.37), we obtain 

 

          dt
t

u
xxaBB

x
D

t

 









0

022

0

2

2

0

2

1 )1( 


  

           =   22
2

2 1
2

3 tx
B

DxaB 







                                                                             (5.51) 

From Eq. (5.38),
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From Eq. (5.39), 
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From Eq. (5.40), 
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We substitutes Eqs. (5.50) - (5.54) into (5.35), then we obtain the solution of Eq. (5.17) 

as  
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It is obvious that the first four terms approximate solutions (Eqs. (5.45 – 5.48)) obtained 

using ADM are the same as the first four terms (Eqs. (5.50 – 5.54)) of the HPM.  
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Figures 5.1 and 5.2 show the results for ADM and HPM solution for various values of R, 

which show the development of a spheroid from its early stages of growth to its 

diffusion-limited size of a stable radius of 0.2 cm. Our results are in good agreement with 

Chaplain and Britton (1993) where the threshold value for the GIF concentration is C = 1 

as shown as horizontal line in Fig. 5.2. Thus if the concentration of GIF is greater than 1 

in any region within the spheroid, then mitosis will be inhibited in that region. This 

enables regions within the spheroid where mitosis is taking place and where mitosis is 

inhibited (necrotic core) to be easily distinguished. Fig. 5.2 shows that the model predicts 

that the onset of necrosis occurs in the center of the spheroid (C = 1 at r = 0) at a radius 

between 0.03 and 0.037 cm. This prediction are well accord with the experimental data of 

Folkman and Hochberg (1973) which show that necrotic cells first appear at the center 

when the spheroids are 0.015 – 0.02 cm in radius. Fig. 5.3 shows the GIF concentration is 

increase as the time increase. This clearly proves the time dependent of GIF 

concentration which against Chaplain and Britton (1993) steady-state model. 
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Figure 5.1  Plot of nondimensionalized GIF concentration profile throughout multicell 

spheroids of size R = 0.2 cm,  127105  scmD , t = 10 s and a= 76.764 
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Figure 5.2  Plot of nondimensionalized GIF concentration profile throughout multicell 

spheroids of size R = 0.03 cm and R = 0.032 cm,  127105  scmD , t = 10 s and a = 

76.764 
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Figure 5.3 Plot of time dependent nondimensionalized GIF concentration profile 

throughout multicell spheroids of size R = 0.2 cm,  127105  scmD and a= 76.764 
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5.7  Summary 

This present analysis exhibits the reliable applicability of ADM and HPM methods to 

solve multicell spheroid model of avascular tumour growth. Our goal has been achieved 

by formally obtaining series solutions with a high degree of accuracy without any need to 

linearization , discretization or restrictive assumptions. The computational size has been 

reduced compared to other existing techniques such as finite different method. Our 

solutions (Eqs (5.54) and (5.59)) are more general which include the time dependent 

solution compare to Chaplain and Britton (1993) which simplified the equation into a 

steady state condition. 
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